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Abstract: In a covert network the need for secrecy is at odds with the desire for easy transmission of information.
Lindelauf et al. [7] have defined several measures that can be used to evaluate the total performance of a covert
social network by using a product of individual measures of secrecy and of information transmission. As one of
their simplest measures of secrecy, Lindelauf et al. use a modified version of the idea of neighbor connectivity.
Using this measure, the optimal network structure is a star graph. In this paper we modify the Lindelauf measure
of secrecy to include information about the connectedness (not just the order) of the survival subgraph using a
measure based on ideas related to Chvátal’s toughness parameter. We determine an upper bound on performance
of trees and conjecture that a specific class of spider graphs achieves maximum performance. We also describe
several opportunities for further research.
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1 Introduction

In a covert network the need for secrecy is at odds
with the desire for easy transmission of information.
A hallmark of any covert network is the idea that the
discovery of one person (one vertex) in the network
renders that person and all members of the network
known to him useless to the network. This means the
closed neighborhood of the vertex is removed from
the graph producing what has been called the survival
subgraph. Gunther, Hartnell, and Novakowski studied
survival subgraphs from the standpoint of their abil-
ity to remain connected using neighbor connectivity.
Lindelauf et al. [7], [8] have defined several measures
that can be used to evaluate the total performance of a
covert social network by using a product of individual
measures of secrecy and of information transmission.
They use a standard social network notion (total dis-
tance) to measure ease of information transmission.
As one of their simplest measures of secrecy, Linde-
lauf et al. use a modified version of the idea of neigh-
bor connectivity. To measure a network’s secrecy they
calculate for each vertex the ratio of the order of the
survival subgraph when this vertex is discovered (sub-
verted) to the order of the original graph, and then sum
these ratios over all vertices of the graph. Using this
measure, the optimal network structure is a star graph.
The discovery of any vertex in the star, however, re-
sults in a graph that is totally disconnected or empty.
The purpose of this paper is to modify the Lindelauf

measure of secrecy to include information about the
connectedness (not just the order) of the survival sub-
graph. Using this modified measure, cycles perform
better than paths or stars, as seems more intuitively
appealing. We determine an upper bound for this new
performance measure for trees. We conjecture that
the optimal tree is a double star–a special type of spi-
der graph–and we give some evidence and analysis to
support the conjecture. Hartnell and Gunther [6] have
identified these double star graphs as best possible us-
ing different covert network measures thereby provid-
ing some validation for the usefulness of the new mea-
sure introduced in this paper.

2 Definitions and Examples
In order to explain these ideas more precisely, we in-
troduce some definitions. All standard notation and
terminology can be found in [10]. Suppose G is a
graph with vertex set V . For any vertex u of V ,
N [u] = {u} ∪ {v ∈ V | v is adjacent to u} is called
the closed neighborhood of u. The next two defini-
tions essentially follow Gunther and Hartnell [2], [3]
and Gunther, Hartnell, Nowakowski [4]. To subvert a
vertex v of G means to remove all elements of N [v]
from G. The resulting induced subgraph, called the
survival subgraph, is exactly the subgraph of G in-
duced by V \N [v]. Lindelauf et al. use the term dis-
cover instead of subvert, but the concept is the same.
The secrecy of a graph G is defined as a sum of se-
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crecy values for each vertex in the graph. In the sce-
nario where we assume 1) each vertex is equally likely
to be discovered or subverted, and 2) whenever a ver-
tex is discovered all its neighbors are detected and
therefore must be removed from the graph, the secrecy
measure of Lindelauf et al. is defined as follows. For
any graph G with p vertices {v1, v2, . . . , vp},

T̃S(G) =

p∑
i=1

1

p

(
p− |N [vi]|

p

)

=
1

p2

p∑
i=1

(p− |N [vi]|) .
(1)

This secrecy measure is combined with a standard
measure for ease of information sharing, the normal-
ized reciprocal of total distance. For any graph G with
p vertices {v1, v2, . . . , vp}, we use dG(vi, vj) to de-
note the distance in G between vi and vj , suppressing
the subscript whenever the graph being referred to is
clear from context. The total distance of G, TD(G),
is defined by

TD(G) =
∑
vi

∑
vj

d(vi, vj).

The information performance, IP(G), is defined by

IP(G) =
p(p− 1)

TD(G)
.

Note that information performance is normalized
with respect to Kp and 0 ≤ IP(G) ≤ 1 with a higher
value indicating better performance. Finally, the Lin-
delauf measure of network performance of graph G is
simply the product T̃S(G)·IP(G). To define a secrecy
measure that includes information about the order and
number of components of the survival subgraph, we
use a modified version of toughness of a graph, an
idea first defined by Chvátal [1]. For each vertex vi
of graph G, we use ci to denote the number of com-
ponents in the survival subgraph G − N [vi]. For the
rest of the paper we use the following total secrecy
measure of a graph G.

Definition 1. Let G be a graph with p vertices
{v1, v2, . . . , vp}. The total secrecy of graph G,
TS(G), is defined by

TS(G) =

p∑
i=1

1

p2

(
p− |N [vi]|

ci

)

=
1

p2

p∑
i=1

(
p− |N [vi]|

ci

)
.

(2)

This secrecy measure modifies each term of the
sum in equation (1) . For the subversion of each ver-
tex, the order of the survival subgraph is replaced by
the average order of each component of the survival
subgraph. Using this measure we have the following
definition of performance of a graph G,

Definition 2. Let G be a graph with p vertices
{v1, v2, . . . , vp}. The performance of graph G,
PERF(G), is defined by

PERF(G) = IP(G) · TS(G)

=
p(p− 1)

TD(G)
· 1

p2

p∑
i=1

(
p− |N [vi]|

ci

)

=

(
p− 1

p

) ∑p
i=1

(
p−|N [vi]|

ci

)
TD(G)

.

(3)

Note that larger values of performance occur
when the expected average order of components in the
survival subgraph is larger and when the total distance
of the original graph is smaller. This is the measure of
performance that will be used for the remainder of the
paper.

Example 1. To illustrate these definitions we compute
the secrecy, information, and performance for three
basic graphs on p vertices: cycle, path, and star. For
the cycle, Cp,

TS(Cp) =
1

p2

p∑
i=1

(
p− |N [vi]|

ci

)
=

1

p2

∑ p− 3

1
=

p− 3

p
.

For the path, Pp,

TS(Pp) =
1

p2

p∑
i=1

(
p− |N [vi]|

ci

)
=

1

p2

[
2(p− 2) + 2(p− 3) + (p− 4)

p− 3

2

]
=

p2 + p− 8

2p2
.

For the star, K1,p−1,

TS(K1,p−1) =
1

p2

p∑
i=1

(
p− |N [vi]|

ci

)
=

1

p2

[
0 + (p− 1)

p− 2

p− 2

]
=

p− 1

p2
.
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By comparing these formulas, one can see that for all
p ≥ 4, TS(Cp) ≥ TS(Pp) ≥ TS(K1,p−1).

The following total distance formulas for the cy-
cle, path, and star are easily calculated:

TD(Cp) =

{
p3

4 , if p is even
p3−p
4 , if p is odd.

TD(Pp) =
p(p2 − 1)

3
and TD(K1,p−1) = 2(p−1)2.

Combining these formulas and recalling that

PERF(G) = IP(G) · TS(G) =
p(p− 1)

TD(G)
· TS(G)

leads to the following performance measures for the
cycle, path, and star.

PERF(Cp) ={
4p(p−1)

p3
· p−3

p = 4(p−1)(p−3)
p3

, if p is even
4p(p−1)
p3−p

· p−3
p = 4(p−1)(p−3)

p(p2−1)
, if p is odd;

PERF(Pp) =

3p(p− 1)

p(p2 − 1)
· p

2 + p− 8

2p2
=

3(p2 + p− 8)

2p2(p+ 1)
,

PERF(K1,p−1) =
p(p− 1)

2(p− 1)2
· p− 1

p2
=

1

2p
.

With a bit more algebra it can be shown that for all
p ≥ 5, PERF(Cp) ≥ PERF(Pp) ≥ PERF(K1,p−1),
a result that seems to align well with other measures
of network survivability.

3 Main Result
The main result of this paper is the determination of a
bound for performance of trees with p vertices. As we
analyze the performance of trees, the following no-
tation and definitions will be useful. We denote the
degree of vertex v in graph G by degG(v). We also
use tsG(u) to abbreviate

(
p−|N [vi]|

p

)
and tdG(u) to

abbreviate
∑

v∈V d(u, v). In all these abbreviations
we suppress the subscript whenever the graph being
referred to is clear from context. A u-v twig in a tree
is a u− v path in which v has degree at least three, u
has degree one and all other vertices on the path have
degree two. We call the vertex v the base of the sprig.
A k-twig is a twig of length k. For any vertex v with
degG(v) ≥ 3 and which is adjacent to degG(v) − 1
leaves, we define a v-sprig to be the subgraph induced
by v and its adjacent leaves, and we call the vertex v
the base of the sprig.

Observation 1. The basic leverage for establishing
the bound is the observation that for M , whenever
a

b
≤ M and

c

d
≤ M , it follows that

a+ c

b+ d
≤ M .

For a given tree T , we look at the terms contributing
to
∑

ts(v) and to
∑

td(v) for an individual vertex,
or for a group of vertices, V ′, and we show∑

v∈V ′ ts(v)∑
v∈V ′ td(v)

≤ M.

Then for the entire vertex set, V , of T∑
v∈V ts(v)∑
v∈V td(v)

≤ M.

Another important observation is that for any ver-
tex u in a tree of order p with cu ≥ 6, we imme-

diately know ts(u) =
p− |N [u]|

cu
≤ 1

6
p. More-

over, for vertex u in any tree except K1,p−1, we know
td(u) ≥ p. Hence for all vertices with cu ≥ 6,
ts(u)

td(u)
≤ p/6

p
≤ 1

6
. For cu ≥ 3, it is straightforward

to show that
ts(u)

td(u)
≤ 1

6
, and when cu = 2, to show

ts(u)

td(u)
≤ 1

6

(
3p+ 5

3p

)
. When cu = 1, however, the

proofs are more complex, and so are presented sepa-
rately.

Lemma 3. Let T be a tree of order p ≥ 10 that
is not K1,p−1 and u be a vertex of T . If cu ≥ 3,

then
ts(u)

td(u)
≤ 1

6
. If cu = 2 and dT (u) ≥ 2, then

ts(u)

td(u)
≤ 1

6
. If cu = 2 and degT (u) = 1, then

ts(u)

td(u)
≤ 1

6

(
3p+ 5

3p

)
.

Proof: Let u be a vertex of tree T , not K1,p−1, of
order p ≥ 10. Let cu ≥ 3. For ease of notation we use
du as an abbreviation for degT (u). Since all vertices
of T \ N [u] are at least distance 2 from u, td(u) ≥
du+ 2(p− du− 1) = 2p− du− 2. Combining this

with the fact that ts(u) =
p− du− 1

cu
and recalling

that cu ≥ 3, we have

ts(u)

td(u)
≤ p− du− 1

cu(2p− du− 2)
=

1

cu

p− du− 1

2p− du− 2

≤
(

1

cu

)
· 1
2
≤ 1

6
.

Now let cu = 2. If du ≥ 2, then there are exactly 2
vertices that are exactly distance 2 from u, and at least
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p − du − 3 that are distance at least 3 from u. Hence
td(u) ≥ du + 4 + 3(p − du − 3) = 3p − 2du − 5.
When du ≥ 2, we have

ts(u)

td(u)
≤ p− du− 1

2(3p− 2du− 5)
=

1

6
+

2− du

3
≤ 1

6
.

When du = 1, the previous equation becomes

ts(u)

td(u)
≤ p− 2

2(3p− 7)
=

1

6
+

1

6(3p− 7)

≤ 1

6

(
1 +

1

3p− 7

)
≤ 1

6

(
1 +

5

3p

)
=

1

6

(
3p+ 5

3p

)
,

since we have p ≥ 3. ⊓⊔

We now begin the analysis of
ts(u)

td(u)
for a vertex

u with cu = 1. Note that for any such vertex u in a
tree, T , u is adjacent to degT (u) − 1 leaves and one
vertex with degree 2. Hence u is the base of a sprig
and is adjacent to exactly one other vertex of degree
2, or u is the leaf on a k-twig with k ≥ 2, or u is
the vertex adjacent to the leaf of a k-twig for k ≥ 3.
These possibilities are shown in Figure 1. We begin by

bounding the value of
ts(u)

td(u)
for the base of a sprig.

!

u 

u 

z 

Figure 1: Vertex u with cu = 1.

Lemma 4. Let T be a tree of order p ≥ 10 and u
be a vertex of T that is the base of a sprig and with
cu = 1. Let z be the vertex of T adjacent to u with
deg(z) = 2. Define V ′ = N [u] \ {z}. Then

∑
V ′ ts(u)∑
V ′ td(u)

≤ 2p− du− 3

−2du2 + (4p− 6)du− p+ 2

≤

{
1/6, if du ≥ 4;
1/5, if du = 3.

where du = deg(u).

Proof: Let ui, 1 ≤ i ≤ du−1, be the leaves in N [u],
so V ′ = {ui | 1 ≤ i ≤ du− 1} ∪ {u}. Then ts(u) =

p− du− 1 and ts(ui) =
p− 2

du− 1
. Thus

∑
V ′ ts(u) =

(p− du− 1) + (du− 1)
p− 2

du− 1
= 2p− du− 3. For

the distance calculation, note that since cu = 1, there
is exactly one vertex with distance 2 from u (and 3
from each ui). So there are p − du − 2 vertices each
of which is at least distance 3 from u (and distance 4
from each ui). Hence td(u) ≥ 3(p−du−2)+du+2 =
3p− 2du− 4, and td(ui) ≥ 4(p− du− 2) + 2(du−
1)+1+3 = 4p−2du−6. Combining these, we have∑

V ′ td(u) = (3p− 2du− 4)+ (du− 1)(4p− 2du−
6) = −2du2 + (4p− 6)du− p+ 2. Hence∑

V ′ ts(u)∑
V ′ td(u)

≤ 2p− du− 3

−2du2 + (4p− 6)du− p+ 2
. (4)

To complete the proof we analyze the quadratic in the

denominator. Since du ≤ p − 2 < p − 3

2
, the min-

imum value of this quadratic is realized at the min-
imum value of du. Substitution into the fraction in
equation (4) gives the values listed in the lemma. ⊓⊔

We next establish a bound for the remaining two
cases when vertex u has cu = 1, namely when (1) u is
the leaf of a k-twig for k ≥ 2, and (2) u is the vertex
adjacent to the leaf of a k-twig for k ≥ 3.

u z u   u*  w   z u   u*             z 

Case 1                  Case 2                 Case 3  

Figure 2: Lemma 5 Cases

Lemma 5. Let T be a tree of order p ≥ 10 and let u
be a vertex of T with cu = 1 that is not the base of a
sprig. Then u is on a k-twig with base z. For k = 2, 3,
let V ′ be the set of vertices on the twig, not including
z. For k ≥ 4, let V ′ contain the leaf and the single
vertex adjacent to the leaf of the k-twig. Then∑

V ′ ts(u)∑
V ′ td(u)

≤ 1

4
.

Proof: For vertex u with cu = 1 that is not the base
of a sprig, u is on a k-twig with base z. We use cases
depending on k. The cases are illustrated in Figure 2.
Case 1: Assume vertex u is on a 2-twig. Let z be
the base of the 2-twig, and label the other vertex on
the twig w. Let V ′ = {u,w}. Again we use dz to
abbreviate deg(z). Then ts(u) = p − 2 and ts(w) =
p− 3

dz − 1
. Thus

∑
V ′ ts(v) = (p − 2) +

p− 3

dz − 1
. For

distance, note that there are dz− 1 vertices distance 3
from u (distance 2 from w), and there are p− dz − 2
vertices each of distance at least 4 from u (at least 3
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from w). So td(u) ≥ 4(p − dz − 2) + 3(dz − 1) +
3 = 4p − dz − 8, and td(w) ≥ 3(p − dz − 2) +
2(dz − 1) + 2 = 3p − dz − 6. Combining we have∑

V ′ td(v) = 7p− 2dz − 14. Hence∑
V ′ ts(v)∑
V ′ td(v)

≤
p− 2 + p−3

dz−1

7p− 2dz − 14
.

Some straightforward algebra shows

p− 2 + p−3
dz−1

7p− 2dz − 14
≤ 1

4

⇔ 4(p− 3)

dz − 1
≤ 3p− 2dz − 6

⇔ 0 ≤ −2dz2 + (3p− 4)dz + p+ 18.

(5)

The minimum value of the quadratic (for 3 ≤
dz ≤ p − 2) occurs at the maximum value of dz, and
substituting p−2 into the quadratic yields p2−9p+34
which is clearly nonnegative for all p. Hence the last
inequality in equation (5) is true.

Case 2: Assume vertex u is on a 3-twig. Then
u may be the leaf or the vertex adjacent to the leaf.
Since we will group these two vertices we let u be
the leaf and u∗ the vertex adjacent to it. Let z be the
base of the 3-twig, and label the other vertex on the
twig w. Let V ′ = {u, u∗, w}. In this case, ts(u) =

p − 2, ts(u∗) = p − 3, and ts(w) =
p− 3

dz
. Thus∑

V ′ ts(v) = (p − 2) + (p − 3) +
p− 3

dz
. Analyzing

distances as in Case 1, we have td(u) ≥ 5(p − dz −
3) + 4(dz − 1) + 6 = 5p− dz − 13, td(u∗) ≥ 4(p−
dz−3)+3(dz−1)+4 = 4p−dz−11, and td(w) ≥
3(p−dz−3)+2(dz−1)+4 = 3p−dz−7. Combining
we have

∑
V ′ td(v) = 12p− 3dz − 31. Hence∑

V ′ ts(v)∑
V ′ td(v)

≤
2p− 5 + p−3

dz

12p− 3dz − 31
.

Some straightforward algebra shows

2p− 5 + p−3
dz

12p− 3dz − 31
≤ 1

4

⇔ 4(p− 3)

dz
≤ 4p− 3dz − 11

⇔ 0 ≤ −3dz2 + (4p− 11)dz − 4p+ 12.

(6)

The minimum value of this quadratic occurs at the ex-
treme values of dz, and 3 ≤ dz ≤ p− 3. Substituting
each of these values into the quadratic it is easy to
verify that the quadratic is nonnegative for all p ≥ 10.
Hence the last inequality in equation (6) is true.

Case 3: Assume vertex u is on a k-twig, k ≥ 4.
As in the previous case, u may be the leaf or the ver-
tex adjacent to the leaf. Since we will group these

two vertices we let u be the leaf and u∗ the vertex
adjacent to it. Let z be the base of the 3-twig. Let
V ′ = {u, u∗}. In this case, ts(u) = p − 2 and
ts(u∗) = p − 3. Thus

∑
V ′ ts(v) = 2p − 5. For dis-

tances, note that there are p−k−1 vertices each with
distance at least k + 1 from u. Thus we have td(u) ≥

(k+1)(p−k−1)+
∑k

i=1 i =
−k2

2
+
2p− 3

2
k+p−1.

Note that the distance between u∗ and the other p− 2
vertices is 1 less than the distance between u and these

other vertices. So td(u∗) ≥ −k2

2
+

2p− 3

2
k+1, and

we have

∑
V ′ ts(v)∑
V ′ td(v)

≤ 2p− 5

−k2 + (2p− 3)k + p
.

Again straightforward algebra shows

2p− 5

−k2 + (2p− 3)k + p
≤ 1

4

⇔ 0 ≤ −k2 + (2p− 3)k − 7p+ 20.

(7)

Note that k ≤ p − 2, and so the minimum value
of the quadratic occurs at the minimum value of k.
We substitute k = 4 and verify that the quadratic is
nonnegative for all p ≥ 10. Hence the inequality in
equation (7) is true. ⊓⊔

We are now ready to prove the main result.

Main Theorem. Let T be a tree of order p ≥ 6. Then

PERF(T ) ≤ p− 1

4p
. (8)

Proof: Using the list of trees of order 10 or less in Ap-
pendix 3 of [5], we have verified for all trees T with
order p, 6 ≤ p ≤ 9 that PERF(T ) ≤ 1

4 by direct cal-
culation. Now let T be a tree of order at least 10. We
consider vertices, or groups of vertices, according to
the value of cu. For any vertex u with cu ≥ 2, we have
ts(u)

td(u)
≤ 1

6
, by Lemma 3. If cu = 1 and u is the base

of a sprig, then by Lemma 4,
∑

V ′ ts(u)∑
V ′ td(u)

≤ 1

5
, where

V ′ is the set of sprig vertices. If cu = 1 and u is not the

base of a sprig, then by Lemma 5,
∑

V ′ ts(u)∑
V ′ td(u)

≤ 1

4
,

for the group of vertices V ′ described in the lemma.
Using Observation 1, it follows that

PERF(T ) =

(
p− 1

p

) ∑
V ts(v)∑
V td(v)

≤
(
p− 1

p

)
1

4
.

⊓⊔
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4 A Family of Almost Optimal Trees
The trees that we conjecture have best performance
are spider graphs in which all legs, except possibly
one, have length two. Specifically, for all p ≥ 7 we
define the double star as follows.

Definition 6. The double star with p ≥ 7 vertices,
denoted DSp, is the graph with vertex set V =
{v0, v1, . . . , vp−1} and edge set E where the precise
nature of E depends on the parity of p. If p is odd,
E =

{
{v0, vi}, {vi, vi+ p−1

2
} | 1 ≤ i ≤ p−1

2

}
. If p is

even, E =
{
{v0, vi}, {vi, vi+ p−2

2
} | 1 ≤ i ≤ p−2

2

}
∪

{{vp−2, vp−1}}.

Thus the double star graph DSp has one vertex,

v0, with degree
⌊
p−1
2

⌋
together with

⌊
p−1
2

⌋
paths of

length two (2-twigs) if p is odd, or
⌊
p−3
2

⌋
paths of

length two (2-twigs) and one path of length three (3-
twig) if p is even. See Figure 3.

!

Figure 3: Double stars for p = 9, 10

Hartnell and Gunther [6] have shown, in informal
terms, that these double stars provide the best defense
against optimal subversion strategies when one con-
siders order of the remaining covert network and the
order of the remaining components. Thus our conjec-
ture can be seen as being an extension of their work in
the sense that we are measuring the information per-
formance of the network as well as its survivability as
measured by secrecy performance.

Before calculating the performance of this graph,
we establish useful fact for calculating total distance
of any graph.

Lemma 7. Let G be a graph. If w is a leaf of G, then
TD(G− w) = TD(G)− 2tdG(w).

Proof: Let G be a graph with leaf w, and use V and
V − w to denote the vertex sets of G and G − w,
respectively. First we note that since w is a leaf,
dG(v, u) = dG−w(v, u), for all u, v ∈ V − w. Thus

tdG(v) =
∑
u∈V

dG(u, v)

=
∑

u∈V−w

dG(u, v) + dG(v, w)

=
∑

u∈V−w

dG−w(u, v) + dG(v, w)

= tdG−w(v) + dG(v, w).

Using this information we have

TD(G) =
∑
v∈V

tdG(v)

=

( ∑
v∈V−w

tdG(v)

)
+ tdG(w)

=

( ∑
v∈V−w

(tdG−w(v) + dG(v, w))

)
+ tdG(w)

=
∑

v∈V−w

tdG−w(v) +
∑

v∈V−w

dG(v, w) + tdG(w)

= TD(G− w) + 2tdG(w),

as desired. ⊓⊔
Now we calculate the performance measures for

the double stars and give a lower bound for the mea-
sures that is independent of parity of p.

Theorem 8. Let DSp be the double star with p ≥ 7.

(a) If p is odd, PERF(DSp) =
p2 − p+ 2

2p(3p− 5)
.

(b) If p is even, PERF(DSp) =
(p2 − 2)(p− 1)

2p(p+ 1)(3p− 8)
.

(c) For all p,

PERF(DSp) ≥
1

6

(
3p+ 5

3p

)(
p− 1

p

)
.

Proof: For part (a), we assume p is odd. Note that
ts(v0) = 1 since DSp − N [v0] is (p−1)

2 isolated ver-
tices. Next observe that for 1 ≤ i ≤ p−1

2 , ts(vi) = 2
since each component of DSp−N [vi] has exactly two
vertices. Finally, for each leaf (p−1

2 ≤ i ≤ (p − 1)),
ts(vi) = p − 2 since the survival subgraph is con-
nected. Hence

p2
p−1∑
i=0

ts(vi) = ts(v0) +

p−1
2∑

i=1

ts(vi) +

p−1∑
i= p−1

2

ts(vi)

= 1 +

(
p− 1

2

)
2 +

(
p− 1

2

)
(p− 2)

= 1 +

(
p− 1

2

)
p =

p2 − p+ 2

2
.
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So for p odd,

TS (DSp) =
p2 − p+ 2

2p2
. (9)

To calculate TD(DSp) we partition the vertices
in the same way that we did to calculate secrecy.

TD(DSp) =

p−1∑
i=0

td(vi)

= td(v0) +

p−1
2∑

i=1

td(vi) +

p−1∑
i= p−1

2

td(vi)

= 3(
p− 1

2
) + (

p− 1

2
)(2 + 5

p− 3

2
)+

(
p− 1

2
)(3 +

p− 3

2
7)

= (
p− 1

2
)(8 + 6(p− 3))

= (p− 1)(3p− 5).

Hence IP(DSp) =
p(p− 1)

TD(DSp)
=

p

3p− 5
, and so

PERF(DSp) = IP(DSp) · TS(DSp) =
p2 − p+ 2

2p(3p− 5)
when p is odd.

For part (b), assume p even, then the double star
has one 3-twig. So for all calculations we group the
vertices on each 2-twig. For secrecy we have

p2
p−1∑
i=0

ts(vi) = ts(v0) +

p−4
2∑

i=1

(
ts(vi) + ts(vi+ p−2

2
)
)
+

ts(v p−2
2
) + ts(vp−2) + ts(vp−1)

=
p
2

p
2 − 1

+

(
p− 4

2

)(
p− 3
p
2 − 2

+ p− 2

)
+(

p− 3
p
2 − 1

)
+ (p− 3) + (p− 2)

=
p

p− 2
+

(
p− 4

2

)(
2p− 6

p− 4
+ p− 2

)
+

2p− 6

p− 2
+ 2p− 5

=
3p− 6

p− 2
+ (p− 3) +

(p− 2)(p− 4)

2

+ (2p− 5)

=
p2 − 2

2
.

So for p even,

TS (DSp) =
(p2 − 2)

2p2
. (10)

To calculate TD(DSp) when p is even, we note
that DSp−1 = DSp − vp−1. Since vp−1 is a leaf we
use the previous lemma together with the formula for
total distance of the double star with an odd number
of vertices. First we note that tdDSp(vp−1) = 6 +

9

(
p− 4

2

)
=

3

2
(3p − 8). From the previous lemma

we have

TD(DSp) = TD(DSp−1) + 2ts(vp−1)

= ((p− 1)− 1)(3(p− 1)− 5) + 3(3p− 8)

= (p+ 1)(3p− 8).

So we have

IP(DSp) =
p(p− 1)

TD(DSp)
=

p(p− 1)

(p+ 1)(3p− 8)

and

PERF(DSp) = IP(DSp) · TS(DSp)

=
(p2 − 2)(p− 1)

2p(p+ 1)(3p− 8)

when p is even.
For part (c), straightforward algebra verifies that

the bound in part (c) is less than or equal to each of
the bounds in parts (a) and (b). ⊓⊔

It is reasonable to conjecture that a best perform-
ing tree has only one large degree (≥ 3) vertex. More
large degree vertices would increase the distance be-
tween peripheral vertices. At the same time, if such
vertices are not the bases of sprigs, they would con-
tribute smaller (compared to degree 1 and degree 2
vertices) terms to the total secrecy sum. Within this
restriction, we can see that the double star has a large
number of vertices that contribute the maximum pos-
sible term to total secrecy, namely p − 2. This tree
however does not have the best secrecy even among
spider graphs. A spider graph with legs of length 3
(3-twigs) has approximately 2

3 of its vertices that con-
tribute either p−3 or p−2. Note that once the length of
the leg (or twig) increases beyond 3, each additional
vertex on the leg contributes only p−3

2 . So it would
seem that legs of length 2 or 3 would provide the best
secrecy performance. The tradeoff comes, however,
when total distance (used to measure information) is
considered. Although, as the following proposition
establishes, a spider graph with all legs of length 3
has better secrecy than the double star of the same or-
der, the larger total distance (worse information per-
formance) offsets, just barely, the better secrecy per-
formance. The total performance is quite close, and so
if secrecy were of higher importance, one could make
the case that the spider graphs with legs of length 3
could be a better choice in certain covert network op-
erations.
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Proposition 9. Let Sp be the spider graph with or-
der p. If Sp has p = 3k + 1 and k legs of length

3, then TS (Sp) =
2(p2 − 2p+ 1)

3p2
and IP(Sp) =

3p

4(3p− 7)
. Further, for k ≥ 3, TS (Sp) > TS (DSp),

but PERF(DSp) > PERF(Sp).

Proof: Let G be the spider graph with order p =
3k + 1 and v0 be the one large degree vertex. La-
bel the vertices on each leg of the spider, in order,
as v3i+1, v3i+2, v3i+3 with v3i+1 adjacent to v0, and
v3i+3 as the leaf, 0 ≤ i ≤ k. To calculate TS (Sp),
note first that ts(v0) = 2 since each component of
Sp−N [v0] has exactly two vertices. Next ts(v3i+1) =
p−3
k and ts(v3i+3) = p− 2. Hence

p2
p∑

i=0

ts(vi) = ts(v0) +

k−1∑
i=0

(ts(v3i+1) + ts(v3i+2))

= 2 + k

(
p− 3

k

)
+ k(2p− 5)

= 2 + (p− 3) +

(
p− 1

3

)
(2p− 5)

=
2p2 − 4p+ 2

3
.

So TS (Sp) =
2(p2 − 2p+ 1)

3p2
. (11)

To calculate TD(Sp) we partition the vertices in
the same way that we did to calculate secrecy. Note
first that td(v0) = 6k, recalling that there are 4k =
p−1
3 legs on the spider. Next td(v3i+1) = 4+9(k−1),

td(v3i+2) = 4+12(k−1), and td(v3i+3) = 6+15(k−
1). Thus

TD(Sp) =

p−1∑
i=0

td(vi)

= 6k +

k−1∑
i=0

(14 + 36(k − 1))

= k(6 + 14 + 36(k − 1))

= k(36k − 16)

=
p− 1

3
(12(p− 1)− 16)

=
4(p− 1)(3p− 7)

3
.

Hence IP(Sp) =
p(p− 1)

TD(Sp)
=

3p

4(3p− 7)
, and so

PERF(Sp) = IP(Sp) · TS(Sp) =
p2 − 2p+ 1

2p(3p− 7)
.

(12)
when p− 1 is divisible by 3.

To see that TS (Sp) > TS (DSp) when 3 divides
p − 1, we compare TS(Sp) (see Equation 11) with
TS(DSp) (see Equations 9 and 10). Simple algebra
shows

2(p2 − 2p+ 1)

3p2
>

p2 − p+ 2

2p2
, for all p ≥ 9, and

2(p2 − 2p+ 1)

3p2
>

p2 − 2

2p2
, for all p ≥ 8.

Finally, to verify that DSp has better overall per-
formance that Sp, we compare Theorem 8(c) with
Equation 12 and note that it is easy to verify

1

6

(
3p+ 5

3p

)(
p− 1

p

)
>

p2 − 2p+ 1

2p(3p− 7)
, (13)

for all p ≥ 12. Direct calculation shows that
PERF (DS10) > PERF (S10). ⊓⊔

It is interesting to note that the advantage in se-
crecy of these spider graphs over the double stars,
TS(Sp) − TS(DSp), asymptotically increases to
1
6 , while the performance advantage of the dou-
ble stars over these spider graphs, PERF(DSp) −
PERF(Sp) <

1
4p , goes to 0 as p increases. Note that

the formula for PERF(DSp) (from Theorem 8(c)) in
equation 13 drastically underestimates the actual per-
formance of DSp for small values of p. Hence the
performance advantage is also underestimated. Ta-
ble 1 shows secrecy and performance measures for
DSp and Sp for selected small values of p in order
to give a more complete understanding of the true re-
lationships.

TS PERF

p Sp DSp Sp DSp

7 0.4898 0.4490 0.1837 0.1964
10 0.5400 0.4900 0.1761 0.1822
13 0.5680 0.4675 0.1731 0.1787
16 0.5859 0.4961 0.1715 0.1751
31 0.6243 0.4849 0.1688 0.1708

Table 1: Secrecy & Performance for DSp and Sp
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5 Further Research
Since the family of double star graphs does not
achieve the bound established in the main result and
we have not been able to discover any trees of order at
least 7 (the smallest order for which the double star is
not simply a path) that perform better than the double
stars, we conjecture that the bound can be improved
to the performance of the double star of any particu-
lar order. A quick review of Lemma 3 and the lower
bound for double star performance shows that the any
vertex u with cu ̸= 1 tends to keep the performance
of a tree less than that of the double star. As noted
in the discussion preceding Proposition 9, the vertices
that can help a tree achieve performance larger than 1

6
are those with cu = 1, and so any attempt to lower the
bound to around 1

6 should focus on showing that the
existence of such vertices forces the existence of other

vertices with larger values of
ts(u)

td(u)
. In particular, the

bound on the contribution from vertices on sprigs and
twigs are prime candidates for further analysis.

Another approach to showing double stars are op-
timal could focus on showing that under certain con-
ditions trees with exactly one vertex of degree greater
than 2 perform better than trees with more such large
degree vertices.

Once the tree conjecture is settled one could at-
tempt to find high performance graphs by focusing,
perhaps, on graphs that have neighbor connectivity at
least 2. For these graphs the total secrecy will be high
simply because cu = 1 for all vertices u. Moreover,
whenever cu = 1 for all vertices in G, TS(G) has
a particularly simple form that should make analysis
of overall performance easier. Specifically, TS(G) =∑p

i=1
1
p2

(p− |N [vi]|) = 1
p2
∑p

i=1 (p− |N [vi]|) =
1
p2

∑p
i=1 (p− deg(vi)− 1) = 1

p2

(
p2 − 2q − p

)
,

where q is the number of edges. This form also sug-
gests that work on characterizing networks with fixed
number of vertices and bounds on the number of edges
could be fruitful. Memon et al. [9] contains several
articles focusing on the description of graph models
that have been applied successfully to study covert
networks. These articles provide a good introduction
to applications of graph theory in the study of covert
networks.
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